Failure Hypotheses I

 

Failure hypotheses for predicting the fatigue life of composite plain bearings

 

Result

The project identified the quadratic failure hypothesis as the appropriate hypothesis to assess local loading with respect to the material fatigue strength of white metals as a sliding layer material. Calculation of the load factor included aspects such as thermal expansion and installation stresses and demonstrated the importance of a comprehensive depiction of load factors.

  Overlay of calculated material utilization and location of crack formation Copyright: © IWM Overlay of calculated material utilization and location of crack formation

Motivation

Plain bearings are used as machine elements in many engines and turbo-machines in a wide range of applications. The continuing trend of cost reduction and increase in power density means that the demands on plain bearings with respect to tolerable surface pressure and maximum dynamic load will only increase. It is therefore necessary to operate sliding layer materials to their strength limit. This requires a reliable forecast of maximum tolerable component loading.

Research objectives

The objective is to create a methodology for interpreting fatigue strength in hydrodynamic bearings. This must include identification of a suitable failure hypothesis for the material and load case, which evaluates loading of the bearing in conformity with experimental investigations.

  • Calculation of the material loading under real boundary conditions, such as thermal expansion and installation stresses
  • Determination of the component fatigue strength in radial bearings
  • Prediction of theoretical component fatigue strength
  • Identification of a more suitable failure hypothesis for interpreting fatigue strength in hydrodynamic bearings with a white metal sliding layer

Research and project partners

  • Institute for Material Applications in Mechanical Engineering at RWTH Aachen University (IWM)
  Logo DFG FVV Copyright: © DFG FVV

Promoted by

The German Research Foundation (DFG)


The Research Association for Combustion Engines

 

Similar Topics